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SUMMARY

This report presents a vector theory for the backscattering of clectromagnetic
waves from a random, rough surface. The basic technique used is that employed by
Dr. Adrian K. Fungin an earlier work. The surfaces uzed in the report are those that
are generated by a stationary gaussian random process as opposed to surfaces gener-
ated by a random array of objects. The former type of surface is assumed to simulate
many of the vegetation-free sections of the earth. It is important to understand the

basic characteristics of scattering from such surfaces for the purpose of aiding military
geographic analysis by radar.



FOREWORD

The authority for performing the work described in this report is contained in
Project 4A062112A854, Military Geographic Analysis.

"he theory described herein is the result of in-house work and is based partially
on the work of other investigators—in particular, Dr. Adrian K. Fung. The author
wishes to thank Mr. Francis G. Capece ar:d Mr. Regis J. Orsinger for aiding in checking
the derivations and in writing the computer program. This task was performed under
the supervision of Mr. Bernard B. Scheps, Chief, Geographic Information Systems
Branch, and Dr. Kenneth R. Kothe, Chief, Geographic Sciences Division. The work
was under the general direction of Mr. Gilberi G. Lorenz, Technical Director, U. S.
Army Engineer Topographic Laboratorics, U. S. Army Topographic Command.
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GLOSSARY OF SYMBOLS

backscatter coefficient; ratio of differential radar cross section to differential
surface area.

backscatter coefficient; ratio of differential radar cross section to differential
projected area.

angle of incidence.

local angle of incidence.

incident wavelength.

wavenumber in the propagating medium above the surface.
wavenumber in the propagating medium below the surface.
function describing the total composite surface.

function describing the slightly rough surface.

function describing the large undulations.

unit vector in the direction of the incident wave.

range vector from the origin of the (x, y, z) coordinate system to the surface
point.

unit vector normal to the total surface, p(x, y).

the point where the scattered field is computed.

unit vector in the direction of P from the origin of the cvordirate system.
unit vector in the direction of P from a surface point.

angular frequency of the wave.

permeability of the medium bilow the surface.

permittivity of the medium below the surface.

intrinsic impedance of the medium above the surface.

total electric field on the surface.

total magnetic field on the surface.

scattered field at point P and in the direction defined by the unit vector, #,.
the distance from the origin to the point P.

locally incident field.

Fresnel reflection coefficient for a local horizontally polarized plane wave.
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C(r)
Cl (r)

GLOSSARY OF SYMBOLS (Cont'd)

Fresnel reflection coefficient for a local vertically polarized plane wave.

Fourier transform of the slightly rough surface function s (x, y).
autocorrelation coefficient for the large undulations.

autocorrelation coefficient for the slightly rough surface.
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BACKSCATTERING OF ELECTROMAGNETIC WAVES
FROM A SURFACE COMPOSED OF TWO TYPES
OF SURFACE ROUGHNESS

1. INTRODUCTION

1. Purpose. The purpose of this report is to present a general vector theory for the
backscattering of electromagnetic waves from random, rough surfaces. The surfaces
under consideration will be those generated by a stationary, random process as opposed
to those generated by a random array of objects.

2. Background. At the present time, the method of extracting military geographic
information about terrain features from radar is almost solely dependent upon the qual-
itative analysis of radar imagery by a photointerpreter. Radar should be a quantitative
tool in view of the controlled frequency, look angle, and self-contained illumination
system. In order to improve upon the present process and to make it more quantita-
tive, an understanding of the process of electromagnetic wave interaction with and
scattering from natural surfaces must be obtained. A general solution to the problem
of plane-wave scattering from an arbitrary rough surface is still lacking. However, re-
cent advances in vector approximate solutions have yielded considerable insight into
the scattering phenomena. Radar scattering theories are basically separated into two
broad classes: those which deal with surfaces generated by stationary, random proc-
esses; and those which deal with surfaces generated by a random array of objects. This
report will deal exclusively with stationary, random processes because they are, in gen-
eral, more realistic of natural terrain than the random array of objects. The parameters
that affect the scattering of an electromagnetic wave from a rough surface must be iso-
lated and molded into a vector theory which will allow the calculation of average re-
turn power. The average return power can then be used to calculate the backscatter co-
efficients 0° and y . The backscatter coefficient 0° can be defined as the ratio of
differential radar cross section to differential surface area, while v can be defined as
the ratio of differential radar cross section to differential projected area. A simple re-
lation exists between y and ¢° which is:

o° = ycosb

where 0 is the angle of incidence. The two backscatter coefficients ¢° and y are
functions only of terrain properties and are not functions of radar parameters. One of




the most difficult problems associated with rough-surface scatter is the question of de-
polarization. If a plane wave is incident onto arough surface with, say, horizontal po-
larization, it is possible to receive not only a horizontal component but also a vertical
component. This is due to the fact that the rough surface will scatter some of the ori-
ginal incident {ield into a different polarization, i.e., depolarization takes place. This
very brief initial statement on depolarization is sufficient to permit a look into the
fundamental parameters that affect the scattering of an electromagnetic wave from a
rough surface. Five basic parameters listed and discussed by Cosgriff, Peake, and Taylor'
are:

a.  Surface Roughness

b.  Angle of Incidence

c.  Polarization

d. Complex Dielectric Constant

e. Frequency

The surface-roughness parameters would include such things as the probabhility distri-
bution of the surface heights about a mean plane and the surface autocorrelation func-
tion. The surface-roughness parameters are the predominant factors in determining the
scattered field. A qualitative understanding of surface roughness can be obtained through
the Rayleigh criterion which relates the ‘‘roughness™ of a surface to wavelength and angle
of incidence. To this date, no thorough quantitative measure of surface roughness has
been developed which may explain the fact that a zeneral, exact solution to the problem
of wave scattering from rough surfaces is still lacking.

The angle of incidence refers to the angle between the direction of the incident wave
and the vertical. The plane of incidence is then the plane containing the wave-propaga-
tion direction and the vertical. In Fig. 1, the arrow located in the xz-planc represents
the direction of the incident wave with angle of incidence, 6, and the plane of incidence
is the xz-plane. At the far ranges, the angle of incidence will be large which usually re-
sults in difficult problems with shadowing. At near ranges, the angle of incidence will
be small. The angle of incidence at a point on a surface can also be defined as the angle
between the direction of the incident wave and the normal to the surface. In this case,
the angle of incidence is usually referred to as the local angle of incidence.

The polarization of an electromagnetic wave is defined by the direction that the elec-
tric field vector takes. If this direction is constant in time, then, the wave is said to be
linearly polarized. This report will consider two types of linear polarization in particular;

'Coq'lff, Peake, Taylor. Terrain Scattering Properties for Sensor System Design (Terrain Hendbook 11), The Ohio
State University, Engincering Experiment Station Bulletin No, 181.
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Fig. 1. The arrow located in the xz-plane represents the direction of the incident wave
with angle of incidence, 8, and the plane of incidence is the xz-plane.

horizontal and vertical. Horizontal polarization occurs when the electric ficld vector is

perpendicular to the plane of incidence and the magnetic field vector lies in the plane of
incidence. Vertical polarization occurs when the magnetic ficld vector is perpendicular
to the plane of incidence and the clectric ficld vector lies in the plane of incidence. Po-

larization effects come into being not only because of the direction of the incident field
vector but because of the depolarization propertics of the surface. The complex diclec-
tric constant is a function of the surface electrical properties (permittivity and conduc-

tivity) and the frequency of the incident wave,

Two basic techniques have evolved for working the problem of electromagnetic wave
scattering from a surface generated by a stationary random process.  This type of sur-
face is one in which the elevations or heights of the surface above a mean plane are dis-
tributed with a certain probability density distribution function. The distribution func-
tion usually assumed is gaussian in order to help simplify the calculations. The tangent.

plane method of computing wave scattering problems consists of approximating the local

fields at a point on the surface by the fields which would be present on a plane tangent
to the surface at the desired point. The calculated surface fields are then placed in the
Helmholtz integral for the scalar case or the Stratten-Chu integral for the vector case.
The scattered field in any particular direction can then be computed. In order for the
tangent-plane approxirmation of local surface fields to be correct, the radii of curvature

3




of the surface at all points must be much greater than the incident wavelength. An ex-
act geomctrical relationship which gives the criterion for the tangent-plane method was
developed by Brekhovskikh? and can be stated as follows:

drr, cosd >> 1\

where t_ is the smaller of two radii of curvature of a surface at a point. The angle 0" is
the local angle of incidence, and \ is the incident wavelength. Therefore, it can be
easily seen that the tangent-plane method will allow only the use of smoothly undulat-
ing surfaces and that no roughness which is smaller than a wavelength can be tolerated.

The other basic method of solving the scattering problem is known as the small per-
turbation method. In this method, the Fourier series or Fourier transform is used in a
perturbation series to solve for the unknown fields above and below the rough surface.
The exact boundary conditions are used; and, theoretically, this method would yield a
good solution to the scattered field from any surface if enough terms of the perturbation
series could be computed. In actual practice, it becomes exceedingly difficult to take
much more than the first term of the series, particularly if finite conduction on the sur-
face is allowed. Since the perturbation series effectively represents the results of the
surface perturbations about a flat plane, then only slightly rough surfaces can be tol-
erated with this method. A quantitative definition of a slightly rough surface could be
as follows:

Iks(x,y)I< 1

where k is the wavenumber in the propagating medium ahove the surface and s(x,y)
is a surface function representing elevations from a mean plane to the surface.

The tangent plane method has been shown to yield good results for the average back-
scattered power with the like-polarized component, at least for small angles of incidence
(0°-20°) when a gaussian autocorrelation function is used. When an exponential corre-
lation function is used, better results are obtained for the like-polarized term. It can
easily be shown, however, that a pure exponential correlation function leads to an imagi-
nary surface slope distribution so that results using this correlation function are very mis-
ieading. The depolarized components from the tangent-plane method depend upon the
sum of the two Fresnel reflection coefficients which does not compare well with experi-
mental results in general.

Many natural surfaces can be assumed to be made of large undulations with small per-
turbations superimposed. Therefore, a correct theory on the backscattering of electro-
magnetic waves from rough surfaces should consider both types of surface roughness.

2 Beckmann and Spizziching, The Scettering of Electromagnetic Weves from Rough Surfeces, Pergamon Prems 1963,
p. 29.
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A recent paper by Fung and Hsias-Lien Chan? has done this for an incident wave with
horizontal polarization by using the small perturbation method up to the first-order
terms as an approximation of the fields op the surface. When the zero-order terms of
the small perturbation solution are used as estimates of the surface fields and placed in
the Strutton-Chu integral, the tangent-plane solution results. The paper "y Fung and
Chan did not consider the effects of along-track surface slopes or the effects of higher
order slope terms in the power calculation. Our purpose here was to apply Fung's ideas
such that the effects of along-track slopes and higher order slope terms are considered in the
horizontal polarization solution and to perform the entire solution for an incident wave
with vertical polarization. For the vertical polarization solution, it was necessary, first,
to solve the problem of a vertically polarized wave being scattered from a slightly rough,
dielectric surface. This derivation is performed in Appendix A. In the case of horizontal
polarization, use was made of Rice’s result* as derived by Fung.*

In practically all problems concerning the scattering of electromagnetic waves from
rough surfaces, certain assumptions must be made in order to make the solution analyti-
cally manageable. The present solution is no exception. Some of the more basic assump-
tions which were made are:

(1) Shadowing cffects are neglccted.

(2) Only the far ficld is calculated.

(3) Multiple scattering is neglected.

(4) The density of the scattering elements is not considered.

(5) Thc treatment is restricted to surfaces that arc generated by stationary
random processes and which yield the elevation values distributed with a two-
dimensional gaussian density distribution function.

In addition to the above assumptions, certain mathematical assumptions are made
which allow an analytical expression to be obtained. The main assumption of the
taugent-plane method in computing the fields at the surface was not used.

The derivations will be preceded by a discussion of the geometry of the problem to be
solved. Following this, the Stratton-Chu integral will be introduced and modified for
future calculations. Next, the entire scattering problem is derived for the case of a hori-
zontally polarized incident plane wave. The final result is the scattering coefficient ¢°

3A. K. Fung and Hsias-Lien Chan, * Backscattering of Waves by Composite Rough Surfaces,” IEEE Transactions on
Antenna end Propegetion, September 1969.

45, 0. Rice, “Reflection of Electromagnetic Waves from Sightly Rough Surfaces,” Communicetions on Pure end
Applied Mathematics, Vol. 4, 1951,

SA.K. Fung, ““Mechanisms of Polarized and Depolarized Scattering from a Rough Dielectric Surface,” Journe! of
the Franklin Institute, Vol. 285, No. 2, February 1968,




for both the like and depolarized terms. The same problem is then solved for the case
of a vertically polarized incident plane wave. The final results appear as graphs of ¢°
versus incident angle for various types of soils, moisture contents, surface-roughness
parameters, and frequencies. A discussion of the final results and their possible meaning
concludes the report. Throughout the report, the rationalized MKS system of units is
used. The notation used in this report will be the same as that employed by Fung and
Hsias-Lien Chan® in their composite surface theory so that the two results can be

compared.

II. ANALYSIS

3. Geometry of Scattering Problem. A plane electromagnetic wave with a harmonic
time dependence of exp(jwt) is incident onto a rough surface described by a function
p(x,y) . This function p(x,y) represents the total elevation from a mean plane to the
surface at an arbitrary point (x,y). The total surface shall be composed of the sum of
large undulations and a slightly rough surface. The large undulations shall be repre-
sented by the general function Z(x,y) and shall be required to conform to the tangent-
plane method. The slightly rough surface shall be designated by s(x, y) and will be re-
quired to conform to the requirementis of the small perturbation method. The relation
among these surface functions is then p(x,y) = Z(x,y) + 8(x, y). It will be assumed that
Z(x,y) and s(x,y) are generated by independent stationary random processes with
zero means. The average values of Z(x,y) and s(x,y) are then the xy-plane. The ge-
ometry of the scattering problem is given in Fig. 2. A right-handed rectangular Cartesian
coordinate system is set up near the surface such that the xy-plane is the mean surface
height or elevation. The unit vector T, is a vector in the direction of the incident wave.
The angle 6 is the incidence angle. The vector T is a range vector from the origin of
the coordinate system to a surface point. The unit vector it is a normal to the total sur-
face of p(x,y). The field point P is where the scattered field is to be computed. The
unit vector R, points from the origin of the coordinate system to the field point P.
The unit vector T, is in the direction of the field point P from a surface point. When
the point P is placed in the far field, it can be seen that 1, = R’,. For the case of back-
scattering, , = -, . The medium above the surface is assumed to be free space. The
medium below the surface is a dielectric with zero conductivity. This is a good approxi-
mation for many soils especially at high radar frequencies. Another right-handed rec-
tangular Cartesian coordinate system (X,Y,Z) is set up with the origin sitting on the
large undulations Z(x, y) such that the Xy-plancistangent to Z(x,y) at an arbitrary

®A. K. Fung and Hsias-Lien Chan.
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Fig. 2. Geometry of the scattering problem.

point. The 7 -axis is then normal to the large undulations. The propagation constant in
the medium z < p(x,y) will be designated k' and is equal to w \/Te_ . The param-
eters inside the radical sign represent the permeability and permittivity, respectively, of
the material in the medium below the surface.

The scattered field in the direction defined by the unit vector i is then ob-
tained from the Stratton-Chu integral as stated by Silver:’

E‘:=K?f2 X/['n'xi].-nﬁ x(i?xl—r)lexp(jk'ﬁ2 -T)ds. (1)

E and il are the total electric and magnetic fields on the surface and n is the intrinsic
impedance of the medium above the surface. The vector i is normal to the total surface.

ke kR
n

K =

R is the distance from the origin'to the point P. The parameter k is the wavenumber
in free space and is equal to 21/ where ) is the wavelength. All quantities are known
in equation (1) except the two surface-ficld vectors. The surface fields can be written
in terms of the local coordinate system (X, y,Z) as follows:

7Samuel Silver, “Microwave Antenna Theory and Design,” MIT Red. Leb. Series 12, McGraw-Hill, 1947, p. 161,
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E = YE; +VE, +2E,
H=%H, +PH, +2H,

where X,7,Z are unit vectors in the local coordinate system (X,Y,Zz). The surface
field components Eg, Eg, E5- are in terms of the local coordmatcs The first problem
which must be solved is to obtam X,¥,andZ in termsof T, j, and K which are unit
vectors in the (x, y, z) system. The surface functirns will no longer be written with their
(x, y) arguments:

2=(12, -Tz +K)y(1+22 +z;)'” ~ (-TZ,-72,+K)
where Z = aa f nd Z, b_ These terms are representative of surface slopes in x

and y. For small slopes, the term Z2 + Z7 is to be considered small with respect to
one. Throughout this report, terms involving Z? and Z3 will be considered negligible
with respect to terms involving Z, and Z . The direction that the ¥-axis takes is de-
fined by the unit vectors , and Z:

Y=@x@)/Txn|
X=¥x2Z
K|=Tsin0 -Kcoso .

By defining the local coordinate system (X,¥,Z) in the above manner, a local plane of
incidence has been established which is defined by the vectors 1, and Z. It can be
seen that this local plane of incidence does not, in general, coincide with the original
plane of incidence defined by the unit vectors #, and K. The two planes will only co-
incide when Z, is equal to zero. The local angle of incidence (¢) is defined as the
angle between Z and -1, and can be computed as follows:

cosO'=-ﬁ| «Z ™ cosf + Z sino .

The unit vectors y and X can be computed:

hd

i = (12 cond+](sind - Z cos) +kZ sino|

IZ x ﬁl|~ sind - Z_cosé

-

y~ :Zyl)o cosd + ) + KZ D, sino

o

X 'izyl)o cosd +k 7,

O

PO —
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where, D, ~ (sin0 - Z_cos0)™ and a Z} term has been dropped in D, . The term
i x E can be calculated in terms of the surface field components E,, E; Ey and the
unit vectors f,f, andk:

AxE = {[EgZ D), cosd - Ey -E, 8] +J[E; +E, Z D, cost +Eys,]
+ ko, By -0, By ] .

The subscripts on the variables s and p refer to partial derivatives with respect to the
subscripted variable. The tarm i x H can be written directly:

Aox A ={[H Z D cosd-H -Hya)+j[H +H Z D cosd +H, ]
+ k[p Hy-p H;].
In the case of backscattering, the term i, x (i x il) is calculated as - ni, x (fi x é):
-1, x (A xE)=- (i cosd +k sin O)Eg +E;Z, Dycos +Ey 8)
+i (E; (Zy Docosz 0+p sin @) - l-‘.7 (cos 8 + p sind)
-E; 5 cosd] .
The final term to be computed is ﬁz X (ﬁz x (N x ﬁ)): ﬁz x (|'|2 x (N x fl)) = -?i (H +
II)T Zy D cos@+H,s | -(icos@+Ksin@)[H_ (Z D, cos? 0 th, sin0) -ll’7 (cosB+p, sin0)
~H; 8, cos 8] . The above terms can be placed in the Stratton-Chu integral to obtain an

expression for the backscattered field in terms of the surface field components in local
coordinates:

"' =K /f{; (E; Z, l)ocos’ 0 - Ejcos0 -E;s cosd + nh.
*nll; Zy D cosd + nll s +3sing (pyl",... -0, l'ly)]
- (: cos + k sin 0)|E; + l'ly Zy D, cosd +E; 8
-nH; (Zy b, cos’ o + P, gind) +n llv(ms 0+ p sind)
+nl; s coso] } exp(-jkn, - dydx . (2)
The limits of integration are over the illuminated area. Tne only unknowns in equation
(2) are the six surface field terms expressed in local coordinates. In order to proceed

further, a particular incident polarization must be chosen and then the local fields
calculated.

9
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4. Horizontal Polarization.

a.  Like-Polarized Term. A horizontally polarized plane wave with unit ampli-

tude is incident onto the statistically rough dielectric (zero conductivity) surface p(x, y).

It shall be required to obtain analytical expressions for o}, , , the scattering coefficient
for the like-polarized return, and for o, , the scattering coefficient for the depolarized
return. In order to do this, an expression must first be obtained for E,, , the like-
polarized backscattered field. From this, the mean power density < E_ . E}, > must

be calculated. Similarly, equations must be derived for E.v and < Egy Er:v> in order

to calculate o}, . The brackets are here used to denote the fact that an average of the
quantity inside is being taken. The asterisk is used to indicate the complex conjugate.
oy can then be calculated from. the equation

o _ lim 4nR? <Eyy B>
Oun Roeoo E‘El.

Where E, is the value of the incident field without regard to polarization. The same
method can be used to determine o}, . The incident wave for horizontal polarization
can be written as

ﬁ‘i = jexp {-jk(xsino - zcos 0)} .
The time harmonic of exp (jwt) has been suppressed and will not be carried along any
further.

In ordey to determine the surface fields in local coordinates, the incident
wave must first be written in terms of the local coordinates. The locally incident field
E! is then

—

B = [RED+y(-]) +iG-))lexp {-jk(xsino-ZcosO), .

exp’-jkl(ﬁl * i)7+(ﬁl -'\")‘y‘ + (ﬁl . i)i} )

The quantities x and Z represent the coordinates of the origin of the local coordinate
system. The original polarization of the wave has been broken up into thiee compo-
nents in the local coordinate svstem. The above dot products can be easily calculated
from results already derived:

X .j=-7, Deos0
yy=1
i oi = "Zy-

10
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Since y - j= 1, md this is the magmtudc of the original transmitted field vector, the
effectsof the X . j and the Z . j components are neglected. This should be a very
good approximation for small Z, which'must be the case in order for the tangent-plane
method to be applicable 17, the smoothly undulating surface. The quantities n, - X,

1 *Y, and n, -2 are easily computed from the previous work:

-

n, +X =s8ind - Z cosd

n, *yY = [Z, cosb sin6 - Z cos® sind]/(sind - Z cosd)=0

-

n -

N
il

- cosf - Z,l sind

The local angle of incidence (6') can be related to angle 6 by the following expressions:

cosf’ ~ cosf + Z,l sin @
gind =~ sind - Z cosd

Using the expressions abo: e for the local angle of incidence, the local incident field can
be written as

ﬁli ~ )"exp{-jk(xsino - Zcosa)}exp {-jk('isino'- Z'coso')} .

The problem locally is now one of a horizontally polarized plane wave incident onto a
slightly rough dielectric surface. This problem has been solved previously by Rice® and
Fung.® The fields up to first order in perturbation, as expressed by Fung in the Fourier
transform notation will be the form used here:

AL

E; = {cxp(-jki sinO')[exp(jki cos0) + R exp(- jkZ cos 0 )]

- /f (k:+k,k'l)0'mdk'dky} EXP

8. 0. Rice.
A. K. Fung, “Mechaniszu . . . "
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(S sermaafer

_ jT - k*)S(k, + ksin6’k )

Q' ’
200k, +k, )02 + KR K)
T =1+ R’l .
R, = Fresnelreflection coefficient for a local horizontally polarized plane

wave.

EXP = exp[-jk(xsind - Z cos 8))

EXP = expljk ¥ +jky -jk,Z)
k, = JK -kI-k when k'>k] +k
k, = -j‘/k:Tk;T when k: +k: > k?
K, = JKT-kI -kl when K’ >k} +k;
- "W when k: +k; > k?

S(k, . k,) is the Fourier transform of the slightly rough surface function
8(x,y) with L k - asthe Fourier variables:

>
I

1 . .
S(k‘.ky) 2 -2—"-'/Js(x,y) exp(-jk!x-]kyy)dydx .

It should be noticed that the k, argumentin S(k, k ) has been repllced by k, +
k sin0'in Q. The angle 6 reprt-scnls the local angle of incidence and is the nngle be-

tween the unit vectors Z and -n . The Fresnel reflection coefficient R, is in terms of
the local coordinate system and can be written as follows:

| kcosd - /k? - K sin? @’
L= Kk cos8 +\/k7 -k%sin’o0

12
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In place of cos8’ and sind’, the following expressions are used:
cosd' ~ cosd + Z_sind
sind’ ~ sind - Z_cosd .

The present form of R; would make future calculations very difficult due to the Z_
in the radical and in the denominator. It would be advantageous to approximate R,
with the first two terms of a Taylor scries expansion about Z_ = 0 since small slopes
are assumed. When this is done, R | can be written as

Ry ~R, +gZ

_ kcosd - /k"-k'sin’o
where R, = k cosé +Jmk’ain'0

g =-2kR_sino/ K cos¢

cosp = /k? -k’sin’O/k'
Thie angle ¢ would be the angle of refraction if the surface were flat, e.g., o(x,y) = 0.
The angle ¢ is then related to the angle of incidence 0 by Snell’s Law. The magnetic
fields associated with the electric fields given by equation (3) can be computed from

Maxwell’s equation written in the local coordinate system:

aH_ = {exp(-jkx:xinl)')lexp(jkicoso) - R exp(-jKZ cosf)] - cosd’

2
/f"“" AN tQMdk dk }on
RN T, EXP dk_dk
ﬂlly— = T (k. - k') Q 5 y

-0 —00

EXP

nH, = { 8in 0’ exp(- jkX sin6)|exp(jk7 cosd’) + R exp(-jKZ cos?’)]

K +K +kk o
ff"‘( M )‘lepdkldk,}EXP.
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At the surface, where the fields must be evaluated, the X and ¥ coordinates are zero
and T ~ s(x,y). The term Q' can also be written as

Q = (1+R, +gZ,) QS(k, +ksind k)

j&* -k

Y R TR TR

The fields evaluated on the surface then become

{(1+R )/fkyk QS exp (-jk,s)dk dk +

gZ ﬁk QSexp (-jk,s)dk dk }EXP

{ exp(jkscosd) + R exp (- jkscosd) + gZ exp(-jks cosf)

<2}
]
]

(l+R°)[f (k: +k,k,) QS exp (-jk s)dk_ dk,

gZ, ff(k: +k,k;)QScxp(-jk's)dk‘dky}EXP

{ l+R,,)/ﬂ k,QSexp(-jk, s)dk dk +
GZ'/fkyk;QSexp(-jk's) dk_ dky} EXP

nH_ = { cosd exp(jks cosd) + Z_sind exp(jks cosd) - R, cosd exp(-jks cosé)

- g2, cos0 exp(-jkscosd) -R Z sind exp(-jkscosd)

(k@ )+ KK
+ (14 Ro)ff[ (k, +:,k.)+k,k, }(‘)Scxp(-jk's)dk' dk,

14
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2 Ve kK
+ gZ, ff- [k.(k, +l::k.)+ y 1 QSexp(-jk‘l)dk'dk,}EXP

- 00 00

nHy={(l+R°)/f

+ g2, f f Ekﬁ(k, -k,) QSexp(-jk s)dk_ dky}EXP

k k, , )
K (k, -k, )QSexp(-jk,s)dk dk)_

nH { sind exp(jks cosd) - Z_ cosd exp(jks cosd) + R_sind exp(-jks cosd)

R, Z cosd exp(-jkscosd) +gZ sind exp(-jks cosd)

Frk K +K 4k K
Qa +Ro)//gkx( x +I'(: +k, z)‘QSexp(-jk.s)dkldky

+

[ KR k)
+ gL, K QSexp(-jkls)dkxdl& } EXP . 4)

The parameter S(k, +ksin&k ) has been written without its arguments. The j com-
ponent of equation (2) for E  together with the above equations for the surface ficlds
can be used to calculate E,, , the like-polarized backscattered field for a horizontally
polarized incident wave. E , in terms of the surface field components is, from equa-
tion (2):

Eyy Kf E;Zy Docosio-F? cosd - E, s cosé +nH

+ 1r)l|7 Zy D, cos@ + nHy s, + siné pyl:',

;ind p, Ey | exp(-jkn, «¥)dy dx.

15




When the surface ficld equations (4) are placed in the above expression for E,,,, , the

following equation results:

HH®

| -2R°Kf [cosd +g Z sind] exp(-jkn, . ) EXPexp(-jks cos)dydx

+ L
= l_2kcoao
& k cos¢
[HH = Kf/f[{;\-&BZx +Cs, +DZy +Esy }Scxp(-jk's)EXPexp(-jkﬁ|.F).
dydxdk‘dky
2 , k(k+kk) KK
where A = (1+R,)Q cos0 (K, + k,K,)+ (1 +R,)Q| 225 4yt

, k(2 +kK) KK
B:gc080(lex+kzk')o+g[ 1( x: z z)+ ;" '] Q

+ (1+R )sino (i +k k') Q

(K, *K K
k

[k . k',)] .
C=(1+R,) Q+(1+R )sing (R +k.k,)Q

k k
D=(+R) ky kacswcos’o + cscl cosf (1 + R ) [—’i—'(k. -k;)] Q
+ (1 +R))sindk k,
E = (1+R,)coso kyk’l()+(l +R,)sinok k Q .

In the above calculations, the term D was approximated by the first term of its Taylor
series expansion around Z, = 0. The reason more terms of the series are not taken is
that higher order slope terms would resultin 1., and these are assumed negligible.
This results in the following approximation for D :

D =~ caco .
(4]
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This approximation will be poor at very small angles of incidence but should be accept-
able over a large range of incidence angles, particularly when the slopes are not large.
The range vector ¥ is

F=ix +jy +ko(xy)=ix+jy+k(Z+9).
Using the above expression for the range vector, the backscattered field E, ., becomes

=- [a, +b Z_] exp [-2jkx sind + 2jkZ coed ) dydx + 1
H y T Dy L) EXPL-<) ) HH

a = 2Ro cosf bl = 2Rogo sinf

Low = f/ff{A+ BZ, +Cs, +DZ, +Es,} S exp(jas) exp(-2jkx sin 6

+ 2jkZ cos)dydx dk, dk,
a=kcosd -k .

It is interesting to see that E,,,, consists of the sum of two basic terms the first of which
depends solely on the large surface undulations Z(x,y) to which the tangent plane
method applies and represents the quasi-specular component of the scattered field. The
term 1, arises because of the small surface perturbations s(x,y); although it also con-
tains terms dependent upon the large surface undulations. In calculating E"" E|:u , it
will be assumed that the two terms are independent o that cross-product terms would
produce a negligible effect upon the final result:

E"HE;;H=KK“/:/:/:[{.|’ +a bz + abz 52,2}

exp {- 2jk sind(x - x') + 2jk cosd (Z - Z)}dydxdy' dx’

»
+ IHH lHH

In order to compute <E, E% >, atwo-dimensional distribution must be assumed for
both Z(x,y) and s&(x,y). The distributions to be used for both surfaces will be gaussian
with zero means. The variance of the large undulations Z(x,y) will be designated o2 .
The variance of the slightly rough surface s(x,y) is given the symbol a: . With atwo-
dimensional gaussian distribution, not only must the mean and variance be known but
the normalized autocorrelation furction of the surfaces, called the autocorrelation coef-
ficient, must be given a particular form. The symbol for the autocorrelation coefficient

17
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for the large undulations will be C(r) and that for the slightly rough surface, C, (r). The
form of C(r) will be that suggested by Fung: '°

2
S {m}

r = \/(x-x')’ + (y-y)T

X-X By=rsina
Y-y ®Ev=rcosa

It can be seen that C(r) is a two-parameter correlation function, and when G is zero an
exponential function results. The quantities L and G are physically significant in that
they combine to give a measure of the distance between hills or valleys on the surface.
With alarge L or G, the distance between hills will be large. When G is small, C(r)
will be essentially exponential except neur the origin, and this will result in a physically
realizable surface with the variance of the surface slopes o" being

F 2 A" 2(72
o =-0C(0)=—
LG

The primes represent derivatives with respect to r . The form of C, (r) will be assumed
gaussian and can be written as

_ er2pd
C,(=¢e""

The parameter | is the correlation distance. The following averages are computed in Ap-

pendix B and are needed to calculate <E, E3. > .

<exp{2jkcosd (Z-2))> = exp |- K, (1-C)]

<Z exp|2jk cosd (Z - Z)]> = <Z_exp|2jk cosb (Z - Z)|>

= -j2ko? cons Leexp|-K,(1-0)]

. ] . 32C 5\ ;
<Z Z exp[2jk cosd (Z-1))>=-o0? la_u’ +K, (%(G) ] exp [-K, (1 -C)]

19, K. Fung, Correspondence to suthor, November 9, 1970.
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B =

K, = 4k?0% cos? 9 .

The correlation coefficient has been written without its (u,v‘.) arguments. Placing the aver.
ages in the integral results in the following:

<EEl> = KK-[[{.?, -4ja b, ko coss == a‘*

- b} & [%g + K, (—g%)2 ]} exp (-2jku sing) exp [-K, (1 -C)] dudv
<Ly Liu>

It will be easier to evaluate the above integral if the coordinates are changed from the
rectangular (u,v) to the polar (r,a). Realizing that the Jacobian is equal to -r, the ex-

pression for <E,  E%. > now becomes:

<E,E}>= KK‘”{: - 4ja, b, ko? coed —(r‘ sina

l? 2 a:C + K -2 aC 2 -k g q d da
-b o ;’r ) 8ina (== rexp (-2) rsmasmO)expl-Kl(l—C)] r

Slyy Igu >

When K >>1, avery rough surface results, and it can be seen that the main contribu-
tion to the integral in r comes only from the region about r=0. The limits on rcan
then be made from zero to infinity. The limits on the integral in a will be from zero to
2n . The correlation function C(r) can be approximated by taking the first two non-
zero terms of its Taylor series expansion about r=0. C(r) then becomes

2

)y~ 1-—r=
(r) TG
or
u2 +V:
] -
o= 1 -

Taking the indicated partial derivatives of C(u,v) with respect to u yiclds the fo'low-

ing expression for < E, E$ >

19




2K o?
<E E" >= KK'ff{l + 8jlbk00l0 o’nma + T:(:

¢ l6b2 ‘k’ cos 0Psin® a

\ K, P
}exp (-2jkr siné sina) exp[—La‘E] r dr da

+ <L 10> .

In order to perform the integration in a, the following integrals are needed (see Appen-

dix C): s
2
f exp (- 2jkr sind sina) da = 27 ] (2kr sind)
)
an
[ sina exp (-2jkr sind sina) da = -j2# J (2kr sing)
°
w ], (2kr sind)
sin’ a exp(-2jkr sind sina) da = 2n Skrand - J,(2krsing) ) .
]

The ] functions represent Bessel functions of the first kind:

167a b k coso o? rJ, (2kr sin )
<EE%> = KK*J ¢ 274 J (2kr sing) + G
)
ub"; o’ 321rb: o'k cos’ 01 [ J, (2kr sin6)
+ —3— ) (2kr sing) - T :
L’c¢ LG 2kr siné

K 2
- 1,2k sinO)]} exp [-f}(;—] fdr + <118 >

The integration in r can be carried out with the aid of the following integral:

[ xV“‘l e-ax2 jv(ﬁx) dx = ( wl )

0

The following expression is then obtained for <E  E}.> :

e B Ay e Y e ey

I i
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= - n: LG  8xd’ chli bl K sind cosd
<EuEfy> =KK +

K, K:
4nL’Gb; 0’k sin’0 Pk
+ K: exp [-k"L G :in"0/K, | +<I, L%.> .
The quasi-specular term has been determined. The component <I,, 13,,> must now be
calculated to complete the result. From previous work, an expression for 1 1% can

g HH “HH
be written

O 1 [——.

+AE*®s, + BA®Z +BB*Z Z +BC*Z s +BD*Z Z +BE*Z s,
+ CA®s +CB®, Z +CC%, 4 +CD* Z +CE®s, s,

+DA®Z + DB*Z Z, +DC*Z ¢ +DD*Z Z + DE*Z s,

+EA%, +EB*Z, + EC*,x + ED* 4 2, + EE*y s, }

SS® exp (jas - ja®s’) exp {- 2jk sinf (x - x) + 2jk cosb (Z - Z)} .
dy dx dy'dx’dk_ dk dk, dk'y s

In order to calculate <I, 1% >, it is necessary to use the following averages which are

computed in Appendix B:

<le'¥ exp [2jk cos8 (2 - Z)|> =<Z Z exp [2jk cosd (Z - Z)]>

_ 2] @’c ac\(aC T
= [m + K, (’E)(W)]"‘P' sl

<SS* exp(jas - ja*s)> = 2nb (k',l -k, )8 (k'y - ky ) a: W(k,  +ksing, ky)

. cxp{-—;o: [a® +a%? -2::'(Z|I}

<exp {2jk cos8 (Z - Z)]> = exp [-K, (1-C)]

21
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<Z, exp[2jk cosd (Z - Z)]> =<Z_exp [2jk cosd (Z - Z)]>
= .j2ka2 cosf (g—g—) exp[-K, (1 - C)}
<Z, exp(2jk cost (Z - Z)]> = <Z exp[2jk cosd(Z - 2)]>
=-j2k o’ cosd (—g%) exp [-K, (1 - )]
<o, SS* exp(jan- ja%8)> = - ja0* oL 20 (K, -k )5 (K
8, SS® exp(jas - ja*s)> ~ - ja%o] =L 208 (K, -k )5 (K, - k)
] W(k‘ + k sino, ky)cxp {-%0: [a2 +a%? . 28:0(:' l}
<&’ S5 expljas - ja%8)> ~ - jac® o 205 (K. k.15 (K. - k
8, exp(jas - ja*s’) -jaoy o= 2r (k, -k,) (y- y)
Wk +k sino,ky)cxp{— Lo (2 +a*? - 2a2%C, )}
g q . - . 4 aC| g 5
<sySb'exp(|as-]a's >~ -ja%g, v 2n8(k -k, )8 (ky - I%)
-W(k, + ksino.ky)exp{- %a: ja’ +a%? . 2 aa*C, I}

<8,S;SS' exp(jas - ja*s)> ~ - 21ro:' 5 (k; -k,) s (k; -k Wik, +ksino, ky)
a’c aC, \? |
{a vot e (50) } "{ Tl

+a% . 2aa%C, |}

3’C ac\?
o o s _ 2 d X
<L1Z exp [2jk cosd (Z - Z)|> = -a{av, + K, (a‘,)}rxpl-l\l(l -C)]

aC
<s'ySS'exp(jas-jaOs')> ~ -j2n o: a El b(k; : k')b(k'y = ky)

- W(k, +ksino, ky ) exp{- —‘lz— a: |a’ + a0t 2aa*( I}

27+
. ' : . ¢
<s 8 SS*®exp(jas - ja*s) >~ - 2wb(k - k)8 (k - ky)": Wk, +hosing k) foms

T e N P .
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I IC M pep—

. 3’C
<s, 8, SS* exp(jas - ja*')> ~ -ap5 (K - k, )¢ K, - ky)": - Wk, +k sine, K)[#
oC

+d aa® (aTl)’] cxp{- % &[4 +a® - 2u°C, l} :

W(k, k,) is the roughness spectrum of s(x,y) and is equal to the two-dimensional Fourier
transform of C, (u,v) . Using the form of C, (u,v) previously given, W(k_ +k sind,k, )=

2
{- (Ik, *+ksind] 24 l< )41} . When the above averages are used in computing
<l ,!

f exp
un Iiy> and the integration is carried out in k

and k; » the delta functions will
become one. Placing the expression given prevnously for C,(u,v) and C(u,v) in the aver
ages and changing the integral to polar coordinates results in

l l' > = KK 2 = ~ & l’smao
HH "HH 10 AA* +(A*B+B A)Bn]kc0800

3

+j(AC*a+ A*Cat)o) LG 2Py (yupy ey |

. 2 2
j8k cos8 ¢ r cosa o

L'G
ar cosac'r:/l’ 4o’ BB Br o' o’ BB*K_ r’sin’ a
Py N . 1 1 N ] 1
+ (Ab.d + A.Lﬂ.)j“ﬂ I; + I‘TG L‘ Gz
2 .2 4 -l'z “2
. , I sin"ao e
- 16n(BC%a + B*Ca*) k cosd o G
H’wlz o’ (B*D) + BD*)K, r’sin acosa " "
- N 401 - |()l0| o (BE*a +B*Ea®) .
7
k cos6 r’ sina cosae”"
LGl
4n 0:(2(1. o’ sin’a | -’/
% ? l- 2 e - 167 (CD*a* + C*Da) -
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2,2
3.3 . s -r'/l
kcosfo r sina cosao, ¢

’L’c
3,2
(CE® + C*E)8rd' rsina cosae™™ ' 4rd’ o’ DD® |
) 1 " TTIG '
2,3 l
81!0’l o DD*K, r’cos’a 167 a: r cos’ ako’ cosfe’ /l
- G’ - (DE*a + D*Ea*) G |
« N
. 4nEE®o e 8n EE"a‘l r cos ae

r/l
7 - . . Wk, +ksin0,ky).

. cxp{--é- al’ (a’ + n.’)} {l + o: n-cl}exp I- Kl r’/[,’(}} 5

exp (-2jkr 8ind sina) . rdk, dk drda .

In the above expression, the term exp (a2 aa®C, ) has been replaced with 1 + o:u"C| .
The final form of <l IHH> must be Ieft as a double integralin k. and k . Integra-
tions can be performed in @ and r as with the quasi-specular term. "In order to do this,
a fr more integrals must be specified:

2
/cosa exp (-j2kr sind sina) da = 0

0
ﬂosa sina exp(-j2kr sin0 sina) da = 1
= i
q . . . 2n ) (2krsingd) {
-j2kr sind da = =1 1
fcos a exp(-)2kr sind sina) da oK sing :
° )
:
|

The integration in r can be carried out using the same Bessel function integral that was
used earlier to evaluate the quasi-specular term. When the integration is carried out in

e and r, the following cquation results for <luul}:u>

A*L’ G exp[-k’Lsin’ 0G/K
<18, > = w'd Kk-ﬂ{ p,!K AN




2k’ L’GJ' cosd sing (AB® + A®*B) exp [-k’L’Gsin’0/K |
Ki

1
2 1.1 K, 1
o, k sind (AC*a + A*Ca®)exp| -k sin 0/ |5— +
/Wi
+ 2
K
|1[ | +_l_]
L'¢ 1

2,4 1 1 .2 2,y . 2
2L°Go" BB*K sin chp[-kzl, G sin O/Q -

¥
Kl

K,
2(BC*a + B*Ca®*)kcos8 o’ al’ exp [ -k’ sin’ 0/['1— '!f]J

LG 1
K ¢ 4
L’Gl'[ 1 l]
¢ P

3 .2, 2 12 K, 1
4(BC*®a + B*Ca*)k" cos0sin" 00" 0, exp -k’sin’e _L—(: + i—’]
K 171
Lor? + =
l. |
* 4,.2,2 , 2
A (;( Lier !‘xp K, + 2L (.2 k s;n 0
(KI+I(,) (K, I' +1°G)

‘ r e apamy o3 2 2ain’ Kl !
2(DE®*a + D*Ea*)g 0" k cos0 exp Y -k sin" 0 G T
- - Lt o X5
121 (,[K o
e 77

+

+

+

o EE*R LG I
o -K'sin’g —+—
(KPP +Egy P Kain'flg * 7

] aa"z\A"cxp{ sin 0 N il,—]
+

K l
DJ




K 1
2(AB* + A'B)u'a:o’ k*cosd siné exp{- k' sin’ 0/-]?10- + l_’]}

+ '
L c[ a + L
L' 1.
. n"BB"f::a’L’Gl2 -k di ' 'l 2k’ain’0|(l|‘
2 2,2 X oo
(K,I' +L'G) | (KI'+L'G) i

2a*DD*q o’ L'GI* Ksin’0 1| eV did,
+ exp exp {- 5 o a’+a }
(K, 1* +L°G)’ [ K, ]

L G {
Terms containing o: have been dropped. In order to obtain a numerical result for of J

as a function of 6, the double integral in <I 1+ > must be evaluated numerically.
b. Depolarized Term. Attention is now directed to the derivation of the depolar- |
ized scattering coefficient o), . The basic expression needed to compute o, is s

1 al

. lim R <Bavhi> |
OHV - R - 80 E‘ E I. ]
The objective now is to calculate the quantity <E, E > . The i and K components |
from equation. (2) form E, . i
ks Kﬂ{ E; + F.57 Zy cscd cosd +s kK, - nH, l’.;, cscd cos’ 0 |
I
-nH; Z sing - nH_ s sind + nH_ coed + nH_ Z sind i
+nH s sind +nll,|ycns0}cxp (-jka, -7)dydx . :

Placing the surface fields from equations (4) into the above expression for E . resuits
in the following equation:
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= - Kff Z, +hs, exp [-2jkx sind + 2jkZ cos6 ] dydx +1,,,,

where: a, = 2Ro cscd cosh ; b2 = 2Ro 8in@ cosf

= Kffff{ A +BZ, +Cs +DZ + E'sy} S exp(jas) exp (- 2jkx sin o

+ 2jkZcosd ] dk, dk dy dx

k. k
A =-Q(1+R,)k k, -Q(l+R))cose —k—" (k, - k)

kk
B =-Qgk, k,-Qgcoss (k, -K,)-Q (1 +R;)sin0 '—}—(k k)
k_k
C = QI +Ry)kk, - Q(1+R,)sing —1—1 k,-k,)

. 2 . 2 k:(|< H‘:k;)
D = Qcsco cosd(l +R,)(k +kk )+Q(l+R)csco cos 0 [—————

k
2k k, (K, K) KK
+5rll+0(l+no)sine[ ! : : ')+ % ']
kKK +kK) KK k (K +k K)+ k) k,
E = (1 +R,)Qsind -—{I&R - ""-yr.']'Q(l"’Ro)[ L ‘k'k - ]coso

It should be noted that [, has been written in the same form as 1, and that only the
definitions of the coefficients of the slope terms are different:

E . EN = KK‘i/-ff/a’I/+abls+abLs b,sy,y}

exp{ - 2jkaing(x- x) + 2jk cond (2 - £)} dy drdy i+ Ly Ly -

In crder to compute < EHV ["Hv , afew more averages are needed:

2,. N
<27, exp (2jk cos0 (% - Z))> = -0’ [%\L” K, (g—t) ]('xp{- K,(1 -(;)}




<|y> = <s,> =0

a’c

. _ 13
<s,8,> =-0, T2

Using the above averages, the equation for C, (u,v) and the approximate equation for
C(u,v), the expression for <E,, E." > becomes

'} St

2,2
20’:2 4K, o r’a; cos’ a 2o|z b: e’ N
<EHVEH.V> = KK* + |1
o 0

L’ L‘G?
4o: rzb: cos” ae

)
|

2,12
-t/
} exp(-2jkr sin@ sina) exp[-K, (1 - C)] rdrda

i <lHV IH.V> ‘

The change from rectangular coordinates (u,v) to polar coordinates (r,a) has been made
in the integral. The integrationsin a and r can be carried out easily hy use of the pre-
viously defined integrals and the approximate expression for C(r). When these integra- |
tions are performed, the final expression for <E__E® > is

HV “HY !
‘ 2rKK*h o] K, L'GI’ 3. 2
<E, . Ef,> = Koy P - Ksin"6 [, <LyL&> - b
| (%9
L'G |

The equation for <I, 1% > will be the same as that for <I, 1% > except that
A, B, C, D, E will be replaced by A, B, C, D, E, respectively. It is interesting to
see that, although the depolarized scattering coefficient does depend on the large sur-
face undulations, if o, =0, the scattering coefficient goes to zero also. A discus

sion of the results and their meaning will hegiven in a later section of the report.
5.  Vertical Polarization.

a.  Like-Polarized Termn. Consider now a vertically polarized plane wave of
unit amplitude with a time harmonic exp(jwt) incident upon the composite rough sur-
face p(x,y) = Z(x,y) + s(x,y) . The surface is again assumed to be a dielectric with a
gaussian distribution of surface heights. It will be required to derive expressions for
Oy + the like-polarized backscatter coefficient, and oy, . the depolarized backscatter

coefficient. In order to do this, expressions must be derived for Eyy < Eyy Edv> s
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E,,.and <Ey,EdN> the ﬁeldl and mean power densities of the like-polarized and
depolarized retuml. Then, ayy and ap, can be determined by the following:

o lim 4=R <E Ew>
W T Rew EE®

o _ lim 4nR'<E, E& >
T RRS |

For u vertically polarized wave, the incident electric field vector is written as

-

E =- (icosa * l’tsinO) exp [-jk(xsing - z cos ) ].

From Maxwell’s equation, the incident magnetic field is

. fcxp tjk(x 8in6 -z cosO)[
H, = 7

where n is the intrinsic impedence of free space. For vertical polarization, it will be
casier to work with the magnetic field vector rather than the electric field vector. The
locally incident magnetic field vector ﬁ can be written in terms of the local coordi-
nates (X,¥,Z) in the same manner as the incident electric vector was written in terms
of local coordinates for horizontal polarization:

H|=%| (x.,)+y(y j)+z(z j)]exp{ jk(x sind - Lcoso)}

-exp{-jklﬂ. )T+ T+ G -im}.

The above vector dot products have been determined previously and are here repeated
for convenience:

-

X+j = -20D,cos
yj=1
i.j=-2,

-

Once again, since j - ¥ = | theeffectsof the X . j and Z -} components will be

neglected. Using the quantities i, - X, i, -y, and i, -Z as computed previously, the
local incident magnetic field vector can be written as
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H: ~ % y exp {-jk(x sind - Zcoov)}exp{-jk(‘!sino'-'! cosd')} .

The problem locally near the surface is that of a vertically polarized wave incident onto
a slightly rough dielectric surface with an angle of incidence equal to 6’ . This problem
is worked in Appendix A, and the results there are restated here in the local coordinate sys-
tem. The fields are correct up to first-order terms:

{ ffD”(k,,ky)mdkydk,‘}EXP

Hy

==
<l
n

{cxp(-jki sind’) [exp(jkZ cosd) - R exp (-jkZ cos@')}

/fc (k, k,) EXP dk, dk, } Exp

H = {/ [-;l(k.,ky)mdk‘dky}BXP

n
=F{ff [k F, (k. k) + kG (k k)EXPdk dk,

- exp(-jkX sin6)[k cost exp(jkZ cost) - kR, coso'cxp(-jk'icoso)]} EXP

Ei:_ﬂ ff-”‘-""(k k,)+k F,( l,ky)lmdkxdky} EXP

E, = -E- {-k sind exp(-jkX sind’) [exp(jkZ coed’) + R“ exp(-jkZ cos6’)]

fflk. G, (k,k,)-k D, (k k) EXPdk, dk}EXP

EXP = expl+jk, x+jk ¥ - jk,Z]
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EXP = -’l-,- exp [-jk(x sind - Z cos0))

B, 8y Aa,,
:8;78, 8,

Dll(kl"&) %

_A, 8, -B a,
Gy, (k. k) T a -a_a

ndn ~ 8,8,

Fll (kl ; K) = ky Gyl (kx vky )l:' k‘ D" (kl ,kv )

A =-1KK Q- kKK Q, - Wk KkK? - Vi kK?

- ‘a3 1
B, =k, k kk?S, - nk’k k k,Q,

8, =jk,S(k, +k sin6, k )nT) sin6'(k* - k*)/2nk>

e —_—

it

vV =. jT"nksin’o'(k’ -k*)S(k_ +ksing k )/27k?

w

jk, +k sing) T sin6’ (k* - k) S (k, +k sing’ k )/2nk”

Q, =k -k*)(1 - Ry) cost’S(k, +k sing’ k )/2nk

a, =k k k™ +9klk k? + k'K k +9k’K]k,

a, =nk ki kk +nk’k kk,

1, =nk’k Kk, +nk’k k k,

Ay =1k Kk + k' kik, + ak’k K7 +nk'kk,

where R, is the local Fresnel reflection coefficient for a vertically polarized wave. The
quantity T, isequal to 1 + Ry The form of R, is as follows:

_k7cost’ - ky/ k? - K sin'0’
% K?coso' + k /KT K sin6'
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sind’ ~ sind - Z_ cosd

cosd' ~ cosd + Z sin0 .

In order to obtain a workable expression for Ry, , it will b necessary to approximate R,
by the first two terms of its Taylor series expansion in Z_, about Z_ = 0. When this ‘

is done, R1l becomes
R ~5+eh

_Koso - k/k? - k’sin’ 0
e k”coso +k /K- K sin' g

- 2k’ k sino (k- k%) -
;k'-k sin'0 {kcoed +k_/k”-K'sin 0 }

At the surface where the fields are to be computed, ¥ =0,7=0,and Z = &(x,y) . Itis
also necessary to write D ,G_,,and F_ in terms of slopes so as to make a manageable

solution later on:

D,, (k. .k,)=jc, (d, +d, Z)S (k, + ksind'k )
G, (k. k)=jc, (g, +8,2Z,)S (k, +k sino',ky)
F,, ok )=je, (f, +6,Z,)S(k, +ksing'k )
¢, = a8, -8,8,]"

d, = a,8,8 -a,0a,

d, = 2,8, -a,aq,

8 = 9,38, -B,8,2,,

B = 9,8, 6,68,

f, = (kg +k,d,)k,
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f, = k8, +k.d,)k,
= (1-t,)a, +a,)+a,(1+1,)(k sing +kein’0) +a, (1 +r )
@ =-ar, +a, (1-1,) -a,r, +a,(1-15,)-a (1 +5,)(2keind cosd + k_cosd)

+a,r, (k sind + ksin’0) +a,r, ta,(l+1,)

B, = k,(1+1,)sin0 -k _(1-r,)cost
8, = k,r,sin0 -k (1+r,)cosd -k _(1-1,)sind +k,r,cosd
k, 7k k(k’- k)
b = 2n
a, = -nICkk.(k’-k'z)cosO/h
a, = - nkK k (k' - k) sing/2«
a, = - nkzkk':(kz -k'*) cos8/2n
a, = -nk_kk(k’ - k) sino/2x
’ 2 '3
a; = -nk k k(k - k")/2n
a, = nk kK sin®0 (k" - k)/2x

@, = - 2nk k| k?sind cosd (K - k)/2x

In deriving the above expressions, terms containing Z: ] Z: ..... etc., have been neglected.
The electric and magnetic fields evaluated on the surface become:

H, :{ /f[)"cxp(-jk's)dk'dky} EXP

-0 00
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H = {exp(jkl cosd) +(r, +r,Z_ ) exp(-jks cosd) +/:/G”CXP(-jk,') :

dk,dk,} EXP

H, ={ -/:/.F’| exp(-jk,s)dk_ dky} EXP
E. = {-{ [f k,F, +k'G”)cxp(-jkzs)dk!dk,

- kZ_sind [exp(jks cosd) - (r, + 1, Z ) exp (- jks cos0))

- k cos0 exp(jks cosd) + k cos (r, +r,Z _)exp(- jks cos6) } EXP

E; =- {{ [ [ kD, +k F_)exp(-jk o) dk_ dky} EXP

E, = -a- {-k (sind - Z_cos0)|exp(jks cosf) + (r, + l"o Z, )exp(-jks cosd)]

+ f f (k,G,, -k,D,,) exp (- jk,9) dk, dk, } EXP . 5)

The (i cosf + lZsinO) term in equation (2) will now form the like-polarized backscattered
field when the incident wave is vertically polarized. Using this term from equation (2) and
the above-defined surface fields, we can obtain an expression for the like-polarized back-
scattered field E,, :

Eyy =- K/ |a'| + bl' Z) exp{- 2jkx sind + 2jkz coso} dydx + 1,

a, =2r,cos0 b =2r sin + 2r, cosd
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H
¢

w?*= ffff{A, +B,Z +C,s +Dlz’+E'.'}Sexp(iu)

. exp {-2jkx sind + 2kZ colo}dkl dk, dydx

S=S(k, +ksind,k,) a=kcosd -k

A =--J':—' {k’f| +k,g, +glkcoso}

B, =-."ki {kvf2 +k,g, + g keosd +g k sino}
¢, =22 {k g, -k d, +g ksi
1 -k a8 %978 ®nd ¢

_ i
D, =g § (ed, +K,f,) coso +kd }
E =-j¢,{fl cosd - d, sino} .

Use has been made of the derived formsof D ,G ., and F, . It can easily be seen
that E,, consists of two terms the first of whlch depends solely on the large undula-
tions and represents the quasi-specular component. The second term 1, , although it
depends on the large undulations through two slope terms and a phase term, arises be-
canse of the dlightly rough surface s(x,y). The form of E,,,, is now the same as that for
E,y » the only difference being in the definitions of the coefficients on the slope terms.
An expression for <E, E$,> can then be written directly without further work:

. . ua’l ’c 8xo L Ga'll{k sind cosd
<E(Ed,> = KK*{ —p— -

K: VVVV

The equation for <l 19> will be the same as that for <I, 18,.> except that A,
B, C, D, and E will be replaced by A,,B,,C,,D,,andE, respectively. Once again, it
can be seen that <L, 19, > will disappear when o, = 0 leaving only the quasi-specular
term.

4xL%C ‘2 2,3 .1
2L Gh """""} exp {-k’L’Gsin’o/Kl} +<, 10>
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b. Dopol.hod Term. The depolarized mttering coefficient for a vertically
polarized incident wave is of,, . The objective now is to obtain an expression for

<ELEN> . The j component of equation (2) will give a basic equation for E,,,,
in terms of the surface fields:

Evu = Kff{E;Zy cscdcos’o-E;oow-Eil,coa0+nH;
+nH; Zycoco cosd +nH_s + E;Zy siné ts E; sind

-E;Z,sin0 -5 E- sino}exp(-jkﬁI - ) dydx

The previously stated surface fields used in the above expression for E,, results in
the following equation:

B = Kf[ {0,2,+ b;.,} exp(-2jkx sind + 2kZ cosd) dydx + 1,
where

a, = 2r,csc0 cosd b, = 2, sinf cosd
Iy, = K/:/:[f {‘1 +B/Z, +Cs +D Z, +E'lcy} S exp (jas)
- exp [- 2jkx sin 8 +2jkZ cosd ] dk, dk, dydx
Ao - jc|
T [k,d, cosd +k_f cosé +d k]
B =T' [(k,d, +k f)coso +d k+(kd, +k.f)sind]
C, =L ywa vk f)eino+6k
U k !( 1 x l)ano 1 ]
(T jcl -
D, = g (k1 +k,8 +kg, cos 0]

c
l(k,f. +k,g )sind - (k g, - kydl)cosal .

1
1k

=
"
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The depolarized expression consists of the sum of two terms, the first of which is depen-
cent only upon the two y slope terms. The term I, is similar to expressions derived
previously. The form of E,,, can be seen to be the same as that for E,;,, so thatan
equation for <E,  E# > can be written down directly:

2rKK*b; o}K L'GI’ 2.1
<E,,E&> = S exp 'l'z'"‘ 1 <I, 18> .
K, +1’G)’ L+
r'e I

The equation for <I,, 19 > is of the same form as <I_ 13 .> except that A, B, C,
D, and E will be repllced mth A,,B,,C,D andE . Agnn. the depolarized term /iis-
appears if o, =0, although the expremon u still a function of the large undulaticn
parameters.

6.  Consideration of Local Vertical Components. 7 he: tie incident fields were .
written in the form of local coordinate components, the effccts of the x -j and z - j
components were neglected. It is the purpose of this section of the report to calculate
the changes that would occur in the resultant backscutter coefficient if the local vertical
terms are not ignored. The changes needed for an incident wave with horizontal polari-
zation will be worked first. For a horizontally polarized incident wave, the incident field
was given carlier and is repeated here for convenience:

J)+2(@ )] exp {-jk(isina'-'i coao')} EXP

El =[{Z-])+y(@§

EXP = exp |- jk(xsin0 - Zcosd)]
. J. =-12,D, cosd

o

-

<,
.

ot o
1]
—

N
-
1]
[ ]
N

D

o

(sin6 - Z_cos0)” !

The amplitude of the local vertical component can be computed from Maxwell's equa-
tion written in local coordinates:

oy
k l

The problem is now to compute the amplitude of the y component of ﬁ: . This am-
plitude will then be multiplied by each of the surface field components determined for
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vertical polarization and then added to the surface fields already given by equations (4)
for horizontal polarization in order to obtain the new expressions for the total field,
The y component of H' will be written as H and is computed to be

H' Zesc

exp {-jk(x'sino' -Zcosd) }

In this calculation the higher order slope terms have been ignored. The total fields on
the surface can now be written in the form:

E; =Ez +E; Hy =H;z +Hy
E; =E5 +E; Hy =Hz+Hyz
E; =Ez +E;; Hy =H+Hz

The subscript 1 refers to the surface field determined by a local incident horizontally
polarized wave, while the subscript 2 refers to the surface fields determined by a local
incident vertically polarized wave. The surface fields due to a local incident vertically
polarized wave can be determined by multiplying Z_csc/n by the fields calculated in
Appendix A and evaluating on the surface:

Z, csco
E; = {/f(kv F, +k, G,,)exp (- jk 8)dk dk

- kZ_sind [exp (jks cosd) - (r, + r, Z, ) exp (- jks cosd)]

- kcosd ean(jkscosd) + k cosd (r, +r,Z, ) exp (- jkscosd) } EXP

_-Z, w0

B, -l { / k.D,, +k FE,)exp (- jk.s)dk‘dky} EXP
Zycsco f _

Ef = K k,G = ky[)")cxp(—jk's)dk.dky

-k(sin@ - Z_cosf) [exp(jks cosd) + (r, + r, Z,) exp (- jks cosd) l} EXP

nHyz =2, cscﬁ{// D, exp(-jk's)dkxdky} EXP
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nHy5 =Z,cact { exp(jks cosd) + (v, + 1, Z, ) exp (- jks cosd)

+ / f G,, exp(-jk,o dk, dk, | EXP

nHz =2 csce{[fF“ exp (- jk,8) dk_ dk } EXP

The above fields must be added to the fields given by equations (4) in order to obtain
the total surface fields. The above equations are correction terms owing to the fact that
local vertical polarization components exist. When the total surface fields are now sub-
stituted into the expression for E ., , it is found that the quasi-specular term remains
unchanged if high-order slope terms are still ignored. The only changein 1, comesin
a new definition of the D term. It can be shown that D now becomes

D = cscd cos’0 k k,Q(1 + R,)+ S804 4k f)c,

k k
+ jec, d, csco +cscd cosd (1 +R,) —’—k—' (k, -k;)Q+sin0(l + Ro)kyk‘Q .

Two more terms have been added to D . When the new total surface fields are placed
in the expression for E the definition of a, changes and the definition of D’
changes as follows:

HV *

D= '2%2 (k,f, +k,g,)jc, - cscO coso jc, g, + csch cosd (1 + RNk +k.K,)Q

k(& +k k) KK
+(1+R,) 1 T ')+ T Q csco

a, =2csch cosd (r, +R,)

The term a, is not used in the final results and, therefore, is not needed. The new defi-
nition of the D’ term has two more terms added which come from local vertical polari-
zation terms,

A similar analysis to the above can be performed for the case of vertical polariza-

tion. This time, the interest lies in determining the amplitude of the local horizontal
component. This can be done by using the following Maxwell equation:
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V xH =jwe, E .

In the above equation, l'.l: is the incident magnetic field written in local coordinates for
a vertically polarized incident wave. The equation for the y component of E: A E:; ,i8
then

EIG =-12, csco exp {'- jhk(x 56’ -2 coso')} EXP
EXP = exp {- jk(xsing - Zcoso)} .

The equations for the surface fields for horizontal polarization must be multiplied by

the amplitude - Zy cscd and added to the surface fields given by equations (5) to ob-
tain the total surface fields. When this is done, the total surface fields are then placed
in the expressions for E,,, aud E,, to determine differences. With these changes,

the definition of the D, term which is the coefficient of Z in 1, becomes

D, =je, %"c—o (dk, +f k. )+d sin0+dlcos’0 cacol

k_k
+ csco(1 + R, )k k O+ cscd cosd (1+R,) —’,“—l k, -k)Q .

The term D, is the only c'hnnge th’t occurs in E,,,. The definition of two terms changes
in E;,, . Theterms are a, and D,:

a, = 2csch cosd (r, +R,)

jc
D, = J—k' [k, f, siné +k g, sind + g, k cscd cosd + k f, csco cos’0

+ k g, cscd cos’ol - cscf cosf(l + Ro)(k: + k’k'.)Q

k(K +kk) KK
- cscd(1+R,) K +klk_ ]Q

The only effective differencein E__ isinthe D term since a, does not appear in
the final result.

This ends the analysis portion of the report, the next section discusees the results
in terms of graphs of the backscatter coefficient versus incidence angle.
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IIl. DISCUSSION

7. Evaluation of Results. The purpose of this section of the report is to describe
numerical calculations and to show and discuss the resultant graphs of scattering coeffi-
cient versus incidence angle. These graphs represent the final result of all derivations and
are plotted for different surfaces, different soils, different moisture contents, and two
different frequencies. The equations for &, , 05, ,03, ., and of, involve double inte-
gralsin k_ and k which cannot be nolved easily by analyucal techniques. It is neces-
sary, therefon, to unc a numerical integration routine in order to obtain final calcula-
tions. A two-dimensional Sirupson’s rule was used to evaluate the double integrals. The
question of limits of integration for the computer was determined by using the exponent
term in W(k, +ksind,k ). Thisexponent will decrease rapidly as k and k
crease. If €19 i usumej to be insignificant, then the limits of mtegnhon (k .y
will be

b = Ky = 12,/5]f

with 0 =0° . A computer program was written in Fortvan 1V for the calculation of the
backscatter coefficients. The program inputs are frequency, limits and number of in-
tervals for integration, standard deviation of the large and small undulations, the corre-
lation parameters, and dielectric constant of the surface. The output of the program is
the four scattering coefficients in decibels for different angles of incidence. The func-
tions needed for integration are forraed in four separate function subprograms, while
integration itself is performed in the main program. Careful examination of the equa-
tions for the scattering coefficients shows that they are not a function of the absolute
values of 0 or L but only their ratio. For all calculations, the value of o read into
the program was left at 1.0 and the value of L was varied. This is not the case, how-
ever, with the small surface perturbations as both o, and | appear to have importance
by themselves and so were varied individually in the program. It is not possible to eval-
uate the scattering coefficients at 6 = 0° due to the csco in the DD® terms of the
double integral. The cscd term came about because of the assumptions that were made
in the derivations and thiese assumptions are invalid at 8 = 0° . Computations were
started at 0 = 10° and were performed in 10° increments up to 8 = 80°. Cal-
culations were also made for the case wherz= o, = 0 or when the surface is just
a smoothly undulating one. In this case, only the like-polarized scattering coeffi-
cients have values as average power for the depolarized terms disappear. These

~ graphs allow a determination to be made of the effect of the small surface per-
turbations on the resultant backscatter. Two different frequencies were used in
the calculations: 9.375 GHz and 5.87 GHz. For each separate frequency used, it

was lmportanl to determme the validity of the very rough surface condition hy evaluat-
ing K- =4k0" cos’ 0 and mnkmg sure that K >> i . If o isheld constant (0 = 1)
and K is evaluated at 0 = 80°, then only thc lower frequcncy need be calculated as-
suming it satisfies the rondition K, >> I:
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K, = 1823 when f = 5.87 GHz, 0 = 80°

It can be seen that the very rough surface condition is good for all calculations. When
the frequency was changed, the parameters o, and | were also changed so that ko
and kI remained constant. The dielectric constants used were taken from Lundien'
and represent soils with certain moisture contents and dry densities. The soil type,
moisture content, and dry density of the soil are written on the curves along with the
other data. The graphs which follow this section are labeled 1 through 30 with all ap-
propriate data lab.led on each one. Preceding the 0° curves is a curve of the correla-
tion function p(r). It can be seen that the correlation distance is larger than L. By far,
the most important factor affecting the results, at least for like-polarized terms, is the
ratio o/L. The effects of polarization are noticed more at large angles of incidence than
at small angles. This agrees very well with the experimental results discussed by Beck-
mann and Spizzichino.'? This would indicate that if surface discrimination is wanted by
polarization variation, then it possibly should be done at large angles of incidence.

The cause of depolarization is the slightly rough surface. Yet, if a slightly rough
surface is taken by itself so that o = 0; then no depolarization results for backscatter—
at least, for first-order perturbation terms. Also, the type of depolarization that results
from the large undulations by themselves (o, = 0) depends on the sum of the two
Fresnel reflection coefficients and does not appear in the final results. This is very in-
teresting because the composite surface ends up with depolarized terms due to the fact
that the local surface fields determined by the small perturbation technique are com-
puted in a local coordinate system which is tilted with respect to the original coordi-
nate system. This means that the depolarization results from a tilted, slightly rough
surface. It can be seen from the graphs that the two depolarized terms are, in general,
not equal over all angles. The cause of this could be either the result of the approxime-
tions made in the solution or there really is a difference in the two terms. It is not
possible at present to determine which case is correct.

The effects of each individual parameter will be discussed briefly. The effect
of differing moisture contents can be seen by examining curves i through 4 and curves
5 through 8. The higher moisture content results in a higher dielectric constant which
yields a little higher value of ¢° for each angle of incidence and for all four polariza-
tions. Curves 9 through 12 are of a different soil type, but care must be taken in com-
paring these graphs with curves 1 through 4 because the moisture contents differ. If
the difference in moisture contents could be taken out there probably would be very
little difference in the two sets of graphs. The effect of changing the o/L ratio can be

1}, R. Lundien, “Terrain Analysis by Electromagnetic Means,” Technical Report No. 3-693, Waterways Experiment
Station, Vicksbury, Miss.
12 3o ckmann and Spizzichino.
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seen by comparing curves 1 through 4 and curves 13 through 16. This effect is particu-
larly noticeable at intermediate angles for the like-polarized terms where the difference
becomes very dramatic. The ratio o/L can be seen to affect the like-polarized terms
much more than the depolarized terms.

The influence of the correlation distance () of the slightly rough surface can
be seen by comparing curves 1 through 4 with curves 17 through 20. Increasing the
correlation distance | has the result of bringing the ¢° curves down at large angles of
incidence. For the like-polarized terms, this effect becomes noticeable for 8 > 40°.
In the depolarized case, the whole curve is lowered; but the differences still become
greater at larger incidence angles. The influence of ¢ , the standard deviation of the
slightly rough surface, can be seen by comparing curves 1 through 4 with curves 21
through 24, and curves 25 and 26. This parameter has little effect on the like-polarized
term until angles of incidence 6 > 40° are reached. The effect of o, on the depolar-
ized terms covers the entire range of incidence angles, and the difference increases a
little at large angles. All of the above comparisons have been made at the frequency

of 9.375 GHz. It would not be reasonable to expect that exactly the same effects would
occur at other frequencies. An idea of frequency differences can be obtained by com-
paring curves | through 4 with curves 27 through 30. For all four polarizations, the
X-band frequency gives a slightly higher value of 6° for all angles of incidence,

1V. CONCLUSIONS

8. General. The following general conclusions can be made from the analysis and
the graphs.

a. A correct theory for explaining radar backscatter must consider a compos-
ite surface as has been demonstrated in this paper.

b.  Depolarization results from the effects of the tilted, slightly rough surface.

9. Specific. The following specific conclusions can be made from the plotted data
at the frequency 9.375 GHz.

a. Theratio o/l. affects the like-polarized terms much more than the de-
polarized terms.

b.  An increase in the moisture content of a soil increases o° slightly for all
angles of incidence but does not significantly change the shape of ¢° versus 0 curve.
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c.  Anincrease in the correlation distance for the slightly rough surface re-
sults in ¢° bemglauthndnn‘leoofmcndenee (0 > 40°) for like-polarized term. For
the depolarized terms, ¢° is less for all angles of incidence.

d.  Anincreasein o, , the standard deviation of the slightly rough surface un.
dulations, results in a higher ¢° . In the case of the like-polarized terms, a higher ¢° pe.
comes noticeable for 6 > 40°. In the case of the depolarized term, a higher 0° is no-
ticeable for all angles of incidence.

e. It wasshown from the graphs that the changes that occurin ¢° duetoa
variation of parameter inputs is not large in many caser. This would indicate that if a
radar is used for determining o® for purposes of identification and discrimination then
a very accurate calibration would be necessary.
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